3.6.29 \(\int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx\) [529]

Optimal. Leaf size=153 \[ \frac {a^{3/2} (12 A+7 B) \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{4 d}+\frac {a^2 (4 A+5 B) \sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {a B \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x)} \]

[Out]

1/4*a^(3/2)*(12*A+7*B)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+
1/4*a^2*(4*A+5*B)*sin(d*x+c)/d/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2)+1/2*a*B*sin(d*x+c)*(a+a*sec(d*x+c))^(1/
2)/d/cos(d*x+c)^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.29, antiderivative size = 153, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3034, 4103, 4101, 3886, 221} \begin {gather*} \frac {a^{3/2} (12 A+7 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{4 d}+\frac {a^2 (4 A+5 B) \sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}}+\frac {a B \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{2 d \cos ^{\frac {3}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]))/Sqrt[Cos[c + d*x]],x]

[Out]

(a^(3/2)*(12*A + 7*B)*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c +
 d*x]])/(4*d) + (a^2*(4*A + 5*B)*Sin[c + d*x])/(4*d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]) + (a*B*Sqrt[a
 + a*Sec[c + d*x]]*Sin[c + d*x])/(2*d*Cos[c + d*x]^(3/2))

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 3034

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[(a + b*Csc[e + f*x])^m*((
c + d*Csc[e + f*x])^n/(g*Csc[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 3886

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(a/(b
*f))*Sqrt[a*(d/b)], Subst[Int[1/Sqrt[1 + x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]

Rule 4101

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[-2*b*B*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]])
), x] + Dist[(A*b*(2*n + 1) + 2*a*B*n)/(b*(2*n + 1)), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^n, x], x]
/; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n
, 0] &&  !LtQ[n, 0]

Rule 4103

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*(m +
n))), x] + Dist[1/(d*(m + n)), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n*Simp[a*A*d*(m + n) + B*(b*d
*n) + (A*b*d*(m + n) + a*B*d*(2*m + n - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] &&
NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1]

Rubi steps

\begin {align*} \int \frac {(a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x))}{\sqrt {\cos (c+d x)}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{3/2} (A+B \sec (c+d x)) \, dx\\ &=\frac {a B \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {1}{2} \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \left (\frac {1}{2} a (4 A+B)+\frac {1}{2} a (4 A+5 B) \sec (c+d x)\right ) \, dx\\ &=\frac {a^2 (4 A+5 B) \sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {a B \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {1}{8} \left (a (12 A+7 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {a^2 (4 A+5 B) \sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {a B \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\left (a (12 A+7 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{4 d}\\ &=\frac {a^{3/2} (12 A+7 B) \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{4 d}+\frac {a^2 (4 A+5 B) \sin (c+d x)}{4 d \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}}+\frac {a B \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{2 d \cos ^{\frac {3}{2}}(c+d x)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.83, size = 107, normalized size = 0.70 \begin {gather*} \frac {a \sqrt {\cos (c+d x)} \sec \left (\frac {1}{2} (c+d x)\right ) \sqrt {a (1+\sec (c+d x))} \left (\sqrt {2} (12 A+7 B) \tanh ^{-1}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )+2 \sec (c+d x) (4 A+7 B+2 B \sec (c+d x)) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{8 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((a + a*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x]))/Sqrt[Cos[c + d*x]],x]

[Out]

(a*Sqrt[Cos[c + d*x]]*Sec[(c + d*x)/2]*Sqrt[a*(1 + Sec[c + d*x])]*(Sqrt[2]*(12*A + 7*B)*ArcTanh[Sqrt[2]*Sin[(c
 + d*x)/2]] + 2*Sec[c + d*x]*(4*A + 7*B + 2*B*Sec[c + d*x])*Sin[(c + d*x)/2]))/(8*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(342\) vs. \(2(129)=258\).
time = 12.65, size = 343, normalized size = 2.24

method result size
default \(-\frac {a \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (-1+\cos \left (d x +c \right )\right ) \left (12 A \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {2}-12 A \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )-\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {2}+7 B \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {2}-7 B \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )-\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {2}+8 A \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \cos \left (d x +c \right )+14 B \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right ) \sin \left (d x +c \right )+4 B \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )\right )}{8 d \sin \left (d x +c \right )^{2} \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right )^{\frac {3}{2}}}\) \(343\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/8/d*a*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(-1+cos(d*x+c))*(12*A*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(1+cos
(d*x+c)+sin(d*x+c))*2^(1/2))*cos(d*x+c)^2*2^(1/2)-12*A*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c)-sin(
d*x+c))*2^(1/2))*cos(d*x+c)^2*2^(1/2)+7*B*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c)+sin(d*x+c))*2^(1/
2))*cos(d*x+c)^2*2^(1/2)-7*B*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c)-sin(d*x+c))*2^(1/2))*cos(d*x+c
)^2*2^(1/2)+8*A*(-2/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)*cos(d*x+c)+14*B*(-2/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)*sin(
d*x+c)+4*B*(-2/(1+cos(d*x+c)))^(1/2)*sin(d*x+c))/sin(d*x+c)^2/(-2/(1+cos(d*x+c)))^(1/2)/cos(d*x+c)^(3/2)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 3389 vs. \(2 (129) = 258\).
time = 1.09, size = 3389, normalized size = 22.15 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/16*(4*(3*(a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqr
t(2)*sin(1/2*d*x + 1/2*c) + 2) - a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2
*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^
2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*
sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*cos(2*d*x + 2*c
)^2 + 3*(a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2
)*sin(1/2*d*x + 1/2*c) + 2) - a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*
x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 -
 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin
(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*sin(2*d*x + 2*c)^2
 + 4*sqrt(2)*a*sin(3/2*d*x + 3/2*c) - 4*sqrt(2)*a*sin(1/2*d*x + 1/2*c) + 2*(2*sqrt(2)*a*sin(3/2*d*x + 3/2*c) -
 2*sqrt(2)*a*sin(1/2*d*x + 1/2*c) + 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*co
s(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x +
1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 3*a*log(2*cos(1/2*d*x + 1/2*
c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 3*a*l
og(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*
x + 1/2*c) + 2))*cos(2*d*x + 2*c) + 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*co
s(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 3*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x +
1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + 3*a*log(2*cos(1/2*d*x + 1/2*
c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - 3*a*l
og(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*
x + 1/2*c) + 2) - 4*(sqrt(2)*a*cos(3/2*d*x + 3/2*c) - sqrt(2)*a*cos(1/2*d*x + 1/2*c))*sin(2*d*x + 2*c))*A*sqrt
(a)/(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1) - (56*sqrt(2)*a*cos(7/3*arctan2(sin(3/2
*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 24*sqrt(2
)*a*cos(5/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2
*d*x + 3/2*c))) - 12*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 28*sqrt(2)*a*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3
/2*d*x + 3/2*c))) - 4*(3*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 7*sqrt(2)*a*sin(7/3*arctan2(sin(3/2*d*x + 3/2*c), co
s(3/2*d*x + 3/2*c))) - 3*sqrt(2)*a*sin(5/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 7*sqrt(2)*a*
sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*cos(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*
x + 3/2*c))) - 8*(3*sqrt(2)*a*sin(3/2*d*x + 3/2*c) - 7*sqrt(2)*a*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2
*d*x + 3/2*c))))*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 7*(a*cos(8/3*arctan2(sin(3/2*d
*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 4*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + a
*sin(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 4*a*sin(8/3*arctan2(sin(3/2*d*x + 3/2*c), co
s(3/2*d*x + 3/2*c)))*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 4*a*sin(4/3*arctan2(sin(3/
2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*(2*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))
 + a)*cos(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 4*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c),
 cos(3/2*d*x + 3/2*c))) + a)*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*
arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3
/2*d*x + 3/2*c))) + 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) + 7*(a*cos(8/3
*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 4*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*
x + 3/2*c)))^2 + a*sin(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 4*a*sin(8/3*arctan2(sin(3/
2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 4*a*sin(
4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*(2*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(
3/2*d*x + 3/2*c))) + a)*cos(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 4*a*cos(4/3*arctan2(sin
(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + a)*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c
)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c),...

________________________________________________________________________________________

Fricas [A]
time = 2.48, size = 409, normalized size = 2.67 \begin {gather*} \left [\frac {4 \, {\left ({\left (4 \, A + 7 \, B\right )} a \cos \left (d x + c\right ) + 2 \, B a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left ({\left (12 \, A + 7 \, B\right )} a \cos \left (d x + c\right )^{3} + {\left (12 \, A + 7 \, B\right )} a \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 4 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right )^{2} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{16 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}}, \frac {2 \, {\left ({\left (4 \, A + 7 \, B\right )} a \cos \left (d x + c\right ) + 2 \, B a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left ({\left (12 \, A + 7 \, B\right )} a \cos \left (d x + c\right )^{3} + {\left (12 \, A + 7 \, B\right )} a \cos \left (d x + c\right )^{2}\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{8 \, {\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

[1/16*(4*((4*A + 7*B)*a*cos(d*x + c) + 2*B*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d
*x + c) + ((12*A + 7*B)*a*cos(d*x + c)^3 + (12*A + 7*B)*a*cos(d*x + c)^2)*sqrt(a)*log((a*cos(d*x + c)^3 - 4*sq
rt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(cos(d*x + c) - 2)*sqrt(cos(d*x + c))*sin(d*x + c) - 7*a*cos(d*x
 + c)^2 + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)))/(d*cos(d*x + c)^3 + d*cos(d*x + c)^2), 1/8*(2*((4*A + 7*B)*
a*cos(d*x + c) + 2*B*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + ((12*A + 7*B
)*a*cos(d*x + c)^3 + (12*A + 7*B)*a*cos(d*x + c)^2)*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d
*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) - 2*a)))/(d*cos(d*x + c)^3 + d*cos
(d*x + c)^2)]

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**(3/2)*(A+B*sec(d*x+c))/cos(d*x+c)**(1/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3435 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*(a*sec(d*x + c) + a)^(3/2)/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{\sqrt {\cos \left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(3/2))/cos(c + d*x)^(1/2),x)

[Out]

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(3/2))/cos(c + d*x)^(1/2), x)

________________________________________________________________________________________